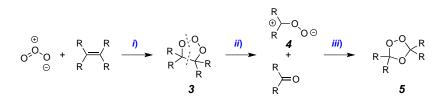
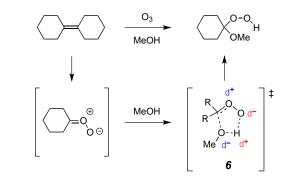

Early Ozonolysis of Alkenes to Ketones and Aldehydes [1905]

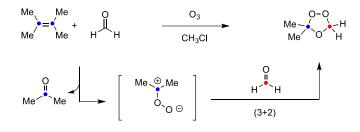
Harries first demonstrated oxidative cleavage of an alkene with ozone to form aldehydes and ketones in 1903¹ and proceeded to study the ozonolysis of organic compounds over the next two decades.²


Criegee's First Proposal of the Carbonyl Oxide Species (aka the "Criegee Intermediate") [1949]

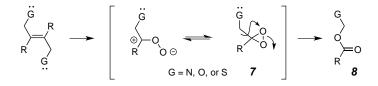
The first proposal of the key carbonyl oxide intermediate, now commonly referred to as the "Criegee intermediate", came in 1949, when Criegee observed dimerization upon treatment of the octahydronaphthalene **1** with ozone. This was rationalized as occurring through the carbonyl oxide intermediate $2.^3$


Criegee's First Proposal of the Three-step Mechanism [1951]

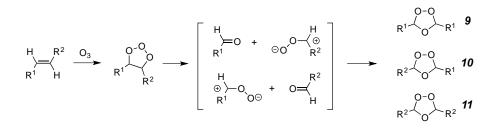
In a perspective Criegee wrote in 1975, he stated to have first proposed the classic three-step ozonolysis mechanism at an IUPAC Congress in New York in 1951. The overall process is rationalized by a series of 1,3-dipolar cycloaddition/cycloreversion/cycloaddition forming *i*) the primary ozonide (aka molozonide) **3**, *ii*) the carbonyl oxide **4** and carbonyl, and, finally, *iii*) the isolable 1,2,4-trioxolane **5**.⁴


Trapping the Carbonyl Oxide with Alcohols [1953]

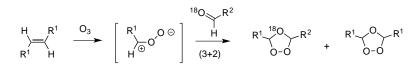
In 1953, Criegee observed the addition of alcohols across the presumed carbonyl oxide intermediate. The mode of addition was informative; the O–H bond of methanol was cleaved rather than a C–H bond, which suggested that a polar mechanism was operative. A radical process should favor cleavage of the weakest bond (i.e., the C–H), whereas a polar process would likely occur through proton transfer and nucleophilic attack by the oxygen atom (see TS 6).⁵


Trapping the Carbonyl Oxide with "Foreign" Carbonyls [1954]

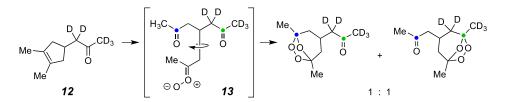
By 1954, Criegee had observed ozonolyses in which the recovered ozonide was comprised of one fragment from the starting alkene and one fragment from a "foreign" or external carbonyl compound present in the reaction mixture from the outset. This suggested an intermediate having a sufficiently long lifetime to encounter a carbonyl compound other than the one produced in the initial cycloreversion step [cf. *ii*), above].⁶


Rearrangements of Carbonyl Oxides [1957]

Bailey observed a series of "anomalous ozonolyses" of alkenes bearing allylic heteroatom substituents (N, O, or S, denoted by generic atom G). A peroxide rearrangement to form esters $\mathbf{8}$ was observed, rationalized by a carbonyl oxide to dioxirane (7) interconversion.⁷

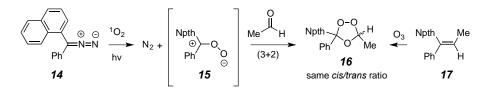

Crossover Experiments [1963-1965]

In the case of unsymmetrically substituted alkenes, the formation of not only the unsymmetrical ozonide **10** but the symmetrical analogs **9** and **11**, in nearly statistical amounts (1:2:1), shows that the carbonyl oxide does not re-add to its aldehyde counterpart before that pair separates and randomizes into solution.^{8,9,10}



Isotopic Labeling Studies [1968-1975]

• *origin of atoms in a product via, here, a double-label experiment:* Using an¹⁸O-labeled "foreign" aldehyde, Fliszar¹¹ and Kuczkowski¹² showed i) that the carbonyl oxygen atom was incorporated as the ether bridge of the 1,2,4-trioxolane product and ii) that the R² and ¹⁸O labels remained intact in the product, refuting a mechanistic proposal at the time to the contrary.



• *symmetrization of an intermediate*: In an elegantly designed experiment, Criegee¹³ used the deuterated cyclopentenyl ketone **12** to support the intermediacy of the carbonyl oxide **13**, symmetrical except for the isotopic labeling. 1,3-Dipolar addition to either the unlabeled ketone or the labeled ketone with equal ease demonstrated that the carbonyl oxide had time to undergo symmetrizing bond rotation.

Alternative Synthesis of the Carbonyl Oxide Intermediate [1973]

The photooxidation of the carbene from the naphthyldiazomethane derivative **14** in the presence of acetaldehyde gave the same mixture of *cis*- and *trans*-trioxolanes **16** as was formed by ozonolysis of the alkene **17**. This strongly supports the common intermediacy of the carbonyl oxide **15** in both reactions.¹⁴

References

[1] Harries, C. Ueber Oxydationen mittels Ozon. Berichte 1903, 36, 1933–1936. [2] Rubin, M. B. The history of ozone part III) C. D. Harries and the introduction of ozone into organic chemistry. Helv. Chim. Acta. 2003, 86, 930-940. [3] Criegee, R.; Wenner, G. Die Ozonisierung des 9,10-Oktalins. Liebigs Ann. Chem. 1949, 564, 9-15. [4] Criegee, R. Mechanism of ozonolysis. Angew. Chem., Int. Ed. 1975, 14, 745-751. [5] Criegee, R. Über den Verlauf der Ozonspaltung (III. Mitteilung). Liebigs Ann. Chem. 1953, 583, 1-36. [6] Criegee, R.; Blust, G.; Zinke, H. Eine neuartige Synthese von Ozoniden. Chem. Ber. 1954, 87, 766-768. [7] Bailey, P. S. The reactions of ozone with organic compounds. Chem. Rev. 1957, 58, 925-995. [8] Riezebos, G.; Grimmelikhuysen, J. C.; van Dorp, D. A. On Criegee's mechanism of ozonisation: The isolation of the six possible ozonides from methyl oleate. Rec. Chim. Trav. Pays-Bas 1963, 82, 1234-1244. [9] Loan, L. D.; Murray, R. W.; Story, P. R. The mechanism of ozonolysis. formation of cross ozonides. J. Am. Chem. Soc. 1965, 87, 737-741. [10] Lorenz, O.; Parks, C. R. Ozonides from asymmetrical olefins. reaction with triphenylphosphine. J. Org. Chem. 1965, 30, 1976-1981. [11] Filszar, S.; Carles, J.; Renard, J. Ozonolysis of cis- and trans-stilbene in the presence of benzaldehyde-18O J. Am. Chem. Soc. 1967, 90, 1364-1365. [12] Gillies, C. W.; Kuczkowski, R. L. Oxygen-18 formaldehyde insertion in the ozonolysis of ethylene and the microwave spectrum of oxygen-18 ethylene ozonide. J. Am. Chem. Soc. 1972, 94, 7609-7610. [13] Criegee, R.; Banciu, A.; Keul, H. Intramolekulare Konkurrenzreaktionen bei der Ozonolyse Substituierter Cyclopentene. Chem. Ber. 1975, 108, 1642-1654. [14] Murray, R. W.; Suzui, A. Mechanism of ozonolysis. New route to ozonides. J. Am. Chem. Soc. 1973, 95, 3343-3348.